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We have previously demonstrated that treatment of hepatocytes with IFN y results a series
of cellular injury processes, including DNA synthesis arrest, membrane breakage and
apoptosis. In the present work, we show that IFN y suppresses cellular respiration and
protein synthesis in hepatocytes, and that cellular respiration suppression is an early event
in the IFN y-induced cellular injuries. Polyunsaturated fatty acids (PUFAs) increased
cellular respiration of hepatocytes, but only linoleic acid showed some protective effect
against IFN y-induced cellular respiration suppression. Linoleic acid also reduced other
IFN y-mediated cellular injuries, including membrane breakage and protein synthesis
inhibition. Like linoleic acid, fetal bovine serum also inhibited IFN y-induced cellular
damage. Increased NAD levels were found in both IFN y-treated and non-treated he-
patocytes following the addition of PUFAs, but clofibrate, a peroxisome proliferator,
bromophenacyl bromide (BPB), an inhibitor of phospholipase, nordihydroguaiaretic acid
(NDGA), an inhibitor of lipoxygenase, and arachidonic acid, a metabolite of linoleic acid,
did not inhibit IFN y-induced cellular injury. In addition, the combination of linoleic acid
and IFN y induced nitric oxide (NO) synthesis in hepatocytes. These results suggest that
fatty acid may play an important role in liver homeostasis during chronic inflammatory

states and sepsis.
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Although hepatocytes are the major target cells in hepati-
tis, the critical factors and mechanism involved in the
cellular injury remain unclear. Various cytokines such as
TNF «, IL-18, 1IL-6, and IFN y are involved in this
inflammatory liver disease (I). In vitro, incubation of
hepatocytes with IFN y induced serious injury to hepato-
cytes, including DNA synthesis arrest and protein synthe-
sis inhibition (2). In animals, IFN y was shown to be a
critical factor in the induction of hepatitis in mice (3, 4).
Increased IFN 1y is often seen in patients with hepatitis (5)
or in bacterially infected liver (6). IFN y receptors are
expressed on hepatocytes in diseased liver, but not in
normal liver (7). Our previous work showed that among
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IFN y, TNF «, IL-13, and IL-6, only IFN vy induced
membrane breakage and apoptosis in primary-cultured
hepatocytes (8). Therefore, it seems that IFN y is involved
in the liver damage and is a key factor in the onset of
hepatitis (9).

IFN y is a multifunctional cytokine secreted by activated
T lymphocytes and NK cells. It plays a crucial role in host
defense due to its antiviral (10), antiproliferative (11),
pro-inflammatory, and immunoregulatory (12, 13) activ-
ities. IFN vy induces cell damage and cell death (14). Its
effect in epithelial cells is biphasic. The first phase consists
of cell proliferation arrest, which is followed by the second
phase of cell death, which has the characteristics of pro-
grammed cell death (15). However, little information, if
any, is available on the relationships among the various IFN
y-induced cellular injuries. Here, we show that IFN y-
induced cellular respiration suppression is an early event of
IFN y-mediated cellular injury. Linoleic acid improved the
cellular respiration and showed some protective effects
against IFN y-induced cellular injuries.

MATERIALS AND METHODS

Materials—Flavianic acid (NYS), BSA (fatty acid-free),
clofibrate, nordihydroguaiaretic acid (NDGA), and bromo-
phenacyl bromide (BPB) were purchased from Sigma.
Murine recombinant IFN y and TNF a were gifts from
Genentech Inc. Human recombinant HGF was a gift from
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Snow Brand Milk Products Co. Female ICR mice were from
Charles River Japan.

Hepatocyte Isolation and Culture—Parenchymal hepato-
cytes were isolated from an adult mouse by the modified in
situ perfusion method (16). The liver was first perfused in
situ through the thoracic inferior vena cava with Ca®*-free
Hank’s solution supplemented with 5 mM EDTA and 5 mM
glucose at 37°C until the blood in the liver was completely
removed. Then the perfusion solution was changed to
0.0125% collagenase solution. After a few minutes of
perfusion, the liver was excised and dispersed in cold
Hank’s solution. The resulting cell suspension was filtered
through 300-gauge mesh. Parenchymal hepatocytes were
separated from nonparenchymal cells by differential cen-
trifugation at 50 x g for 90 s. The dead parenchymal he-
patocytes were removed by density gradient centrifugation
in Percoll. The liver parenchymal hepatocytes were seeded
at a density of 3 10¢ cells/cm? in 96-well plates with RPMI
1640 containing 2X 10~° M insulin, 2x10~° M dexameth-
asone, 1.0% BSA (fatty acid free), and antibiotics.

Measurement of Cellular Respiration—Mitochondrial
respiration was measured by the mitochondrial-dependent
reduction of MTT to formazan (17) with some modification.
Briefly, after removal of the culture medium at the indicat-
ed time, cells were incubated with fresh medium containing
MTT (0.2 g/ml) at 37°C for 1.5 h. Thereafter, the cells
were washed with NKT solution (6.0 g NaCl, 0.2 g KCl, and
3.0 g Tris in 1,000 ml dH,O, pH 7.4) three times, and the
formazan formed in the cells was dissolved with 100 g1 of
lysing buffer (45% dimethylformamide, 10% SDS, pH 4.7).
The absorbance of each well at 570 nm was measured by a
micro plate reader, MT-120 (Corona Electronic).

Cellular Protein Determination—Quantitative binding
and extraction of the dye flavianic acid (NYS) were used for
determining cellular protein (18). After removal of the
culture medium, cells were washed with NKT solution
three times, then fixed with 10% trichloroacetic acid for 30
min. Fixed cells were stained with 0.2% flavianic acid (100
ul/well) at room temperature for another 30 min. Unbound
dye was removed by washing the cells with 1% acetic acid
4 times. The plates were air-dried and the bound dye was
extracted with 10 mM unbuffered Tris base. The absor-
bance of each sample was read at 415 nm.

Measurement of Cellular NAD* Levels—Cells were
exposed to IFN y for 48 h in the presence or absence of
linoleic acids (300 xM). They were extracted in 0.25 ml of
0.5 N HCIO,, scraped, neutralized with 3M KOH, and
centrifuged for 2 min at 10,000 X g. The supernatant was
assayed for NAD by using a modification of the colorimetric
method (19). The rate of increase in the absorbance at 560
nm was read immediately after addition of the NAD
samples and after 10 and 30 min incubation at 37°C against
a blank.

Lactate Dehydrogenase (LDH) Release Assay—LDH
activities in the culture medium were measured using a
CytoTox 96 Nonradioactive Cytotoxicity Assay Kit (Pro-
mega, Madison, USA). A 50 ] aliquot of culture medium
of hepatocytes was mixed with 50 x1 of substrate solution.
The mixture was kept at room temperature for 20 min, and
the reaction was stopped by adding 50 x1 of stop solution to
the mixture. The absorbance of each well at 415 nm was
measured using a micro plate reader, and the cell mem-
brane damage was expressed as percentage lysis.
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Determination of Nitric Oxide (NO) Production—NO in
the growth medium was detected by using Griess’ reagent.
A 50 glaliquot of culture medium was mixed with 50 1 of
Griess reagent (1% sulfanilamide and 0.1% naphthylene-
diamine in 2.5% H,PO, solution), and kept at room temper-
ature for 20 min. The optical absorbance values of the
samples were read at 570 nm using a micro plate reader
MTP-120 (Corona Electronic).

Analysis of Chromosomal DNA—Cells were incubated
with the lysis buffer (10 xg/ml proteinase K, 10 mM Tris,
150 mM NaCl, 1 mM EDTA, 1% SDS) for 15h at 37°C.
Chromosomal DNA was obtained by phenol/chloroform
extraction and ethanol-precipitation. The sample in TE
solution (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) with 1
ug/ml RNase was incubated for 1h at 37°C. The same
amount of DNA from each sample was subjected to elec-
trophoresis through 1.0% agarose gel containing 0.1 xg/ml
ethidium bromide.

RESULTS

Cellular Respiration Suppression Is an Early Event of
IFN y-Mediated Cellular Injury—Our previous work
showed that among various cytokines expected to be in-
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Fig. 1. IFN y-induced cellular damage in primary hepatocyte
cultures. Hepatocytes were exposed to IFN y stimulation at 20 h
after seeding. Cellular respiration (A), cellular protein (B), and LDH
released into the culture medium (C) was detected according to the
procedures outlined in “MATERIALS AND METHODS” after a
further 38 h incubation of hepatocytes with IFN y.
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volved in cellular injury in hepatitis, only IFN 7 induces
membrane breakage and apoptosis in-hepatocytes (8). In
this experiment, we found that IFN y also depresses cel-
lular respiration and inhibits protein synthesis in hepato-
cytes (Fig. 1). As in the case of cell membrane damage,
DNA arrest, and apoptosis (8), IFN y at the concentration

TABLE I. Comparison of various IFN y-mediated cellular
injuries. Hepatocytes were exposed to 100 U/mlIFN y at 8.0 h after
seeding, then the incubation was started. Cellular respiration, cellular
protein, DNA fragmentation (apoptosis), and cell membrane damage
(LDH release) were estimated by the methods described under
“MATERIALS AND METHODS.”
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Fig. 2. Effects of PUFAs on cellular respiration. A, hepatocytes
were exposed to PUFAs (100 4M) at 8h after seeding, then the
incubation was started, and cellular respiration was assayed at the
time indicated on the abscissa; B, hepatocytes were exposed to PUFAs
(200 4uM) and IFN y (100 U/ml) at 24 h after seeding. Cellular
respiration was measured after another 38 h incubation of hepato-
cytes with PUFAs and IFN y; C, hepatocytes were exposed to linoleic
acid (200 xM) and IFN y at 20 h after seeding. Cellular respiration
was measured after another 38 h incubation of hepatocytes with
linoleic acid and IFN y.
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of 10 U/ml was enough for the induction of cellular injury,
and 100 U/ml was the concentration inducing maximal
cellular damage in hepatocytes.

To examine whether there are relationships among the
various IFN y-induced various cellular injuries, we com-
pared the induction times of the IFN y-mediated injuries.
As shown in Table I, different IFN y-induced cellular
injuries occurred at different stages of incubation. Cellular
respiration suppression occurred immediately after IFN y
addition (Table I), implying that the suppression of mito-
chondrial respiration is an early event of IFN y-mediated
cellular injury.

Linoleic Acid Increases Cellular Respiration and Inhibits
IFN y-Induced Cellular Damage—It is well known that
the £-oxidation of long-chain fatty acids provides the liver
with its main supply of energy for synthetic and transport
processes (20). Therefore, we next examine whether
polyunsaturated fatty acids (PUFAs) have any effect on
IFN y-induced cellular injury. As shown in Fig. 2A, all four
tested PUFAs increased the cellular respiration of hepato-
cytes. Elevated respiration of hepatocytes began at 2 h and
was maximal at 12-24 h after fatty acid addition (Fig. 2A).
Thereafter, cellular respiration decreased progressively.
However, among these four PUFAs, only linoleic acid
showed a significant protective effect on IFN y-induced
cellular respiration depression (Fig. 2B); the other three
PUFAs (Ole, ALA, and EPA) had little effect.

Although IFN y suppressed cellular respiration in a
dose-dependent fashion, it hardly affected cellular respira-
tion of hepatocytes in the presence of 200 ¢ M linoleic acid
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Fig. 3. Protective effects of linoleic acid on IFN y-induced
cellular injury. Hepatocytes were exposed to linoleic acid, HGF
(100 ng/ml), arachidonic acid (Ara, 200 x M), BPB (4 mM), NDGA (4
mM), and IFN y (100 U/ml) at 20 h after seeding. LDH released into
the culture medium (A) and the cellular protein of hepatocytes (B)
was measured after another 38 h incubation of hepatocytes with
various factors.
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(Fig. 2C). In addition, linoleic acid treatment also reduced
IFN y-induced LDH release (Fig. 3A) and protein synthe-
sis inhibition (Fig. 3B) in hepatocytes. Compared with
hepatocyte growth factor (HGF), linoleic acid showed
weaker protective effects on IFN y-induced LDH release
(Fig. 3A). In fact, linoleic acid at low concentration showed
some synergistic effect on IFN y-induced LDH release
(Fig. 3A). Arachidonic acid, a metabolite of linoleic acid,
bromophenacyl bromide (BPB), an inhibitor of phospho-
lipase, and nordihydroguaiaretic acid (NDGA), an inhibitor
of lipoxygenase, did not affect the protective action of
linoleic acid against IFN y-induced cellular injury (Fig. 3),
implying that arachidonic acid-mediated signal transduc-
tion was not involved in linoleic acid inhibition of IFN y-
induced cellular injury in hepatocytes.

Roles of Fetal Bovine Serum and NAD Levels in IFN y-
Induced Cellular Damage—Considerable amounts of fatty
acids (~300 xM) exist in the serum. In our previous work,
we found that fetal bovine serum (FBS) enhances the
inhibitory effects of HGF on IFN y-induced cellular injury,
including apoptosis and cell membrane damage, but FBS
itself does not show any protective effect against IFN y-
induced cellular injury (8). However, in that experiment,
hepatocytes had been cultured in medium containing 10%
FBS for 10 h before exposure to IFN y (8). To avoid any
effects due to the pre-treatment of hepatocytes with FBS,
hepatocytes were starved in serum-free medium for 20 h
after seeding, and then incubated with 100 U/ml IFN y for
another 38 h. As shown in Fig. 4, compared with FBS-treat-
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Fig. 4. Protective effect of FBS on IFN y-induced cellular
injury. A, hepatocytes were cultured in serum-free medium (®, ®) or
medium supplemented with 5% FBS (a, ¥) for 20 h after seeding.
Thereafter, cells were exposed to IFN y (100 U/ml) in the same
medium supplemented with (¥) or without (®, &) 5% FBS. Activities
of LDH released into the culture medium were determined with the
indicated substrate as described under “MATERIALS AND METH-
ODS”; B, cells were cultured in the medium containing 5% FBS for 20
h, and then IFN y (100 U/ml) was introduced into the culture
medium. After another 38 h incubation, cellular respiration of
hepatocytes was measured by MTT reduction assay as described
under “MATERIALS AND METHODS.”
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ed hepatocytes, serum-starved hepatocytes became more
sensitive to IFN y stimulation. FBS itself showed some
inhibitory effect on IFN y-induced cellular injury (Fig. 4).

IFN y induces apoptosis in hepatocytes (8). Increased
DNA breaks may activate the poly (adenosine 5 -diphos-
phoribose) synthetase (PARS), and this rapidly leads to
consumption of NAD and energy depletion. This causes cell
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Fig. 5. Role of peroxisomal oxidation in linoleic acid inhibi-
tion of IFN y-induced cellular injury of hepatocytes. A:
Hepatocytes were maintained with or without PUFAs (300 M) for
24 h after seeding. After removal of PUF As, cells were incubated with
the medium supplemented with or without 100 U/ml IFN y for
another 24 h. NAD levels was estimated by the method described in
“MATERIALS AND METHODS.” B: Hepatocytes were maintained
with or without linoleic acid (300 xM) for 24 h after seeding. After
removal of linoleic acid, cells were incubated with 100 U/m] IFN y in
the presence or absence of 0.3 mM clofibrate for another 38 h. LDH
released into the culture medium was measured by the procedures
described in “MATERIALS AND METHODS.”
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Fig. 6. Induction of nitric oxide synthesis by linoleic acid and
IFN 7. Hepatocytes were exposed to linoleic acid (300 xM) and IFN
y at 24 h after seeding. Nitric oxide released into the culture medium
was estimated by using Griess’ reagent as described in “MATERIALS
AND METHODS?” after another 38 h incubation of hepatocytes with
IFN y and linoleic acid.
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death (21). On the other hand, maintenance of intracellular
NAD level by addition of nicotinamide preserves the
growth and functioning of cultured hepatocyte (22). There-
fore, we further examine the effects of linoleic acid on the
NAD levels in hepatocytes. As shown in Fig. 5A, although
IFN y reduced the NAD levels in hepatocytes, linoleic acid
increased the NAD levels in both IFN y-treated and
untreated hepatocytes (Fig. 5A). Other PUFAs (EPA and
ALA) also showed protective effects on NAD levels of
hepatocytes (Fig. 5A), but clofibrate (CF), a peroxisome
proliferator, did not inhibit IFN y-induced cellular injury
in hepatocytes (Fig. 5B).

Induction of Hepatocyte Nitric Oxide Synthesis by a
Combination of Linoleic Acid and IFN y—TIt is known that
IFN y can induce nitric oxide synthase expression in
hepatocytes. The maximal induction of nitric oxide synthe-
sis in hepatocytes is afforded by a combination of IFN y and
another nitric oxide synthesis stimulator, such as lipopoly-
saccharide, TNF «, or IL.-13. Although linoleic acid or IFN
v alone had little effect on hepatocyte nitric oxide synthe-
sis, the combination of linoleic acid and IFN y strongly
induced nitric oxide synthesis in hepatocytes (Fig. 6)

DISCUSSION

Our observations may be summarized as follows. (1) Mito-
chondrial respiration suppression is an early event in IFN
y~-mediated cellular injuries in hepatocytes. Linoleic acid
increased mitochondrial respiration and inhibited cellular
injury in IFN y-treated hepatocytes. (2) The combination
of linoleic acid and IFN y induced nitric oxide synthesis in
hepatocytes.

Long-chain polyunsaturated fatty acids (PUFAs) are
essential components of membrane phospholipids. In re-
cent years, interest has been aroused in the possible use of
n-3 PUFAs-rich oils for protection against and treatment of
various diseases. Polyunsaturated fatty acids modulate
membrane properties (23, 24) and modify signal transduc-
tion across the cell membrane, as indicated by changes in
ligand-induced receptor activation and second messenger
formation after enrichment with n-3 and n-6 PUFAs (25,
26). The biological effectiveness of PUFA may be partly
due to their role as precursors of the eicosanoids. Recently
arachidonic acid and its metabolites have been identified as
a novel class of intracellular second messengers that
modulate expression of growth-related genes and cell
growth after mitogenic stimulation in various cell lines (27,
28). However, because neither arachidonic acid nor phos-
pholipase and lipoxygenase inhibitors influence the inhibi-
tory effects of linoleic acid (Fig. 3), it is unlikely that
arachidonic acid metabolism is involved in the inhibitory
actions of linoleic acid on IFN y-induced cellular injury. It
is interesting that FBS itself shows some inhibitory effect
on IFN y-induced cellular injury (Fig. 4). Because there is
no difference of cellular damage between FBS/FBS+IFN
and FBS/IFN-treated hepatocytes (Fig. 4A), it is likely
that FBS inhibition of IFN y-induced cellular injury may
involve changed metabolic or redox states of hepatocytes.

Linoleic acid shows reciprocal actions on cell membrane
breakage of hepatocytes: high concentrations of linoleic
acid decrease, but low concentrations increase the cell
membrane damage of IFN y-~treated hepatocytes (Fig. 3A).
Stimulated mitochondrial fatty acid 8-oxidation generates
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a large amount of reactive oxygen species (ROS), which
increases cellular injury. However, in addition to mitochon-
drial 8-oxidation, there are other two fatty acid oxidation
pathways located in peroxisomes and endoplasmic reticu-
lum of hepatocytes (29). Under conditions of impairment
or overload of mitochondrial B-oxidation, increased fatty
acid oxidation via the microsomal and peroxisomal path-
ways occurs (30, 31). Peroxisomes are important for
detoxification because catalase is present at a high concen-
tration in peroxisomes and scavenges the reactive and
potentially harmful H,0,, producing O,, and H,O (32). On
the other hand, endotoxin reduces peroxisomal S-oxidation
and catalase activities both in vivo and in vitro (33).
However, since a peroxisome proliferator (CF) could not
block IFN y-mediated cellular injury (Fig. 5B), stimulation
of peroxisomal B-oxidation by overload of mitochondrial
[3-oxidation is not the major reason for the inhibitory action
of linoleic acid on IFN y-mediated cellular injury. In
addition, it was reported that a stimulator of fatty acid
peroxisome (-oxidation can increase NAD synthesis from
tryptophan (34). Because clofibrate does not protect he-
patocytes from IFN y-mediated cellular damage (Fig. 5B)
and other PUFAs show the same protective effect as linoleic
acid on the NAD levels of hepatocytes (Fig. 5A), the
possibility can be excluded that increased NAD levels due
to linoleic acid are responsible for the linoleic acid inhibi-
tion of IFN y-induced cellular damage.

The mechanism by which linoleic acid enhances IFN -
mediated nitric oxide synthesis in hepatocytes (Fig. 6) is
not clear. Duval et al. (35) and we (36) showed that cyto-
kine-mediated hepatocyte nitric oxide synthesis is related
to the redox and metabolic states of hepatocytes, and both
ROS and reduced glutathione are required. Since a low
concentration of linoleic acid does not affect IFN y-mediat-
ed nitric oxide synthesis (data not shown), it is likely that
nitric oxide induction by IFN y and linoleic acid is at least
partially due to linoleic acid peroxidation. As in other
organs, the biological role of nitric oxide in liver is ambigu-
ous (37). However, it is noteworthy that NO may behave as
a pro-oxidant or antioxidant in iron-mediated oxidative
stress in hepatocytes and play a critical role in protecting
the liver from oxidation stress (38). Therefore, it is
possible that NO acts as antioxidant in linoleic acid and IFN
y-induced oxidative stress and inhibits IFN y-mediated
cellular injury in hepatocytes. It is clear that further
research is needed to define the mechanism of linoleic acid
and IFN y-mediated hepatocyte NO synthesis and the role
of nitric oxide in IFN y-induced cellular damage.

Although polyunsaturated fatty acid can perturb a
number of cellular functions, such as platelet aggregation,
lymphocyte mitogenesis, surface receptor capping, cell-to-
substrate adhesion, and secretion, little is known of the
pathophysiologic relevance of PUFAs and the cytokines in
inflammatory liver diseases. Our present study suggests
that PUFAs may play potent roles in liver homeostasis
during chronic inflammatory states and sepsis. Further
understanding of the interaction between PUFAs and
cytokines should be of great important for evaluation and
preservation of hepatic function during states of severe
illness and sepsis.
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